Previous Page  30 / 31 Next Page
Information
Show Menu
Previous Page 30 / 31 Next Page
Page Background

А.В. Хохлов

122

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

[37]

De Frate L.E., Li G. The prediction of stress-relaxation of ligaments and tendons using the

quasi-linear viscoelastic model.

Biomechanics and Modeling in Mechanobiology

, 2007, vol. 6, no. 4,

pp. 245–251. DOI: 10.1007/s10237-006-0056-8

Available at:

http://link.springer.com/article/10.1007/s10237-006-0056-8

[38]

Duenwald S.E., Vanderby R., Lakes R.S. Constitutive equations for ligament and other soft

tissue: evaluation by experiment.

Acta Mechanica

, 2009, vol. 205, no. 1, pp. 23–33.

DOI: 10.1007/s00707-009-0161-8

Available at:

http://link.springer.com/article/10.1007/s00707-009-0161-8

[39]

Lakes R.S. Viscoelastic materials. Cambridge, Cambridge Univ. Press, 2009. 461 p.

[40]

Duenwald S.E., Vanderby R., Lakes R.S. Stress relaxation and recovery in tendon and liga-

ment: Experiment and modeling.

Biorheology

, 2010, vol. 47, pp. 1–14.

DOI: 10.3233/BIR-2010-0559

Available at:

http://content.iospress.com/articles/biorheology/bir559

[41]

De Pascalis R., Abrahams I.D., Parnell W.J. On nonlinear viscoelastic deformations: a reap-

praisal of Fung’s quasi-linear viscoelastic model.

Proc. R. Soc. A

., 2014, vol. 470.

DOI: 10.1098/rspa.2014.0058

Available at:

http://rspa.royalsocietypublishing.org/content/470/2166/20140058

[42]

Babaei B., Abramowitch S.D., Elson E.L., Thomopoulos S., Genin G.M. A discrete spectral

analysis for determining quasi-linear viscoelastic properties of biological materials.

J. Royal. Soc.

Interface

, 2015, vol. 12, no. 113, pp. 20150707. DOI: 10.1098/rsif.2015.0707

Available at:

http://rsif.royalsocietypublishing.org/content/12/113/20150707

[43]

Khokhlov A.V. Creep and relaxation curves produced by the Rabotnov nonlinear consti-

tutive relation for viscoelastoplastic materials.

Problemy prochnosti i plastichnosti

[Problems of

Strength and Plasticity], 2016, vol. 78, no. 4, pp. 452–466 (in Russ.).

[44]

Khokhlov A.V. Long-term strength curves generated by the nonlinear Maxwell-type

model for viscoelastoplastic materials and the linear damage rule under step loading.

Vestn.

Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki

[J. Samara State Tech. Univ., Ser. Phys. &

Math. Sci.], 2016, vol. 20, no. 3, pp. 524–543 (in Russ.). DOI: 10.14498/vsgtu1512

[45]

Khokhlov A.V. Constitutive relation for rheological processes: Properties of theoretic creep

curves and simulation of memory decay.

Mechanics of Solids

, 2007, vol. 42, no. 2, pp. 291–306.

DOI: 10.3103/S0025654407020148

Available at:

http://link.springer.com/article/10.3103%2FS0025654407020148

[46]

Khokhlov A.V. Constitutive relation for rheological processes with known loading history.

Creep and long-term strength curves.

Mechanics of Solids

, 2008, vol. 43, no. 2, pp. 283–299.

DOI: 10.3103/S0025654408020155

Available at:

http://link.springer.com/article/10.3103%2FS0025654408020155

[47]

Khokhlov A.V. Properties of creep curves at piecewise-constant stress generated by the line-

ar viscoelasticity theory.

Problemy prochnosti i plastichnosti

[Problems of Strength and Plasticity],

2015, vol. 77, no. 4, pp. 344–359 (in Russ.).

Available at:

http://www.unn.ru/e-library/ppp.html?anum=322

[48]

Khokhlov A.V. General properties of stress-strain curves at constant strain rate yielding

from linear theory of viscoelasticity.

Problemy prochnosti i plastichnosti

[Problems of Strength and

Plasticity], 2015, vol. 77, no. 1, pp. 60–74 (in Russ.).

Available at:

http://www.unn.ru/e-library/ppp.html?anum=296