А.В. Хохлов
122
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
[37]
De Frate L.E., Li G. The prediction of stress-relaxation of ligaments and tendons using the
quasi-linear viscoelastic model.
Biomechanics and Modeling in Mechanobiology
, 2007, vol. 6, no. 4,
pp. 245–251. DOI: 10.1007/s10237-006-0056-8
Available at:
http://link.springer.com/article/10.1007/s10237-006-0056-8[38]
Duenwald S.E., Vanderby R., Lakes R.S. Constitutive equations for ligament and other soft
tissue: evaluation by experiment.
Acta Mechanica
, 2009, vol. 205, no. 1, pp. 23–33.
DOI: 10.1007/s00707-009-0161-8
Available at:
http://link.springer.com/article/10.1007/s00707-009-0161-8[39]
Lakes R.S. Viscoelastic materials. Cambridge, Cambridge Univ. Press, 2009. 461 p.
[40]
Duenwald S.E., Vanderby R., Lakes R.S. Stress relaxation and recovery in tendon and liga-
ment: Experiment and modeling.
Biorheology
, 2010, vol. 47, pp. 1–14.
DOI: 10.3233/BIR-2010-0559
Available at:
http://content.iospress.com/articles/biorheology/bir559[41]
De Pascalis R., Abrahams I.D., Parnell W.J. On nonlinear viscoelastic deformations: a reap-
praisal of Fung’s quasi-linear viscoelastic model.
Proc. R. Soc. A
., 2014, vol. 470.
DOI: 10.1098/rspa.2014.0058
Available at:
http://rspa.royalsocietypublishing.org/content/470/2166/20140058[42]
Babaei B., Abramowitch S.D., Elson E.L., Thomopoulos S., Genin G.M. A discrete spectral
analysis for determining quasi-linear viscoelastic properties of biological materials.
J. Royal. Soc.
Interface
, 2015, vol. 12, no. 113, pp. 20150707. DOI: 10.1098/rsif.2015.0707
Available at:
http://rsif.royalsocietypublishing.org/content/12/113/20150707[43]
Khokhlov A.V. Creep and relaxation curves produced by the Rabotnov nonlinear consti-
tutive relation for viscoelastoplastic materials.
Problemy prochnosti i plastichnosti
[Problems of
Strength and Plasticity], 2016, vol. 78, no. 4, pp. 452–466 (in Russ.).
[44]
Khokhlov A.V. Long-term strength curves generated by the nonlinear Maxwell-type
model for viscoelastoplastic materials and the linear damage rule under step loading.
Vestn.
Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
[J. Samara State Tech. Univ., Ser. Phys. &
Math. Sci.], 2016, vol. 20, no. 3, pp. 524–543 (in Russ.). DOI: 10.14498/vsgtu1512
[45]
Khokhlov A.V. Constitutive relation for rheological processes: Properties of theoretic creep
curves and simulation of memory decay.
Mechanics of Solids
, 2007, vol. 42, no. 2, pp. 291–306.
DOI: 10.3103/S0025654407020148
Available at:
http://link.springer.com/article/10.3103%2FS0025654407020148[46]
Khokhlov A.V. Constitutive relation for rheological processes with known loading history.
Creep and long-term strength curves.
Mechanics of Solids
, 2008, vol. 43, no. 2, pp. 283–299.
DOI: 10.3103/S0025654408020155
Available at:
http://link.springer.com/article/10.3103%2FS0025654408020155[47]
Khokhlov A.V. Properties of creep curves at piecewise-constant stress generated by the line-
ar viscoelasticity theory.
Problemy prochnosti i plastichnosti
[Problems of Strength and Plasticity],
2015, vol. 77, no. 4, pp. 344–359 (in Russ.).
Available at:
http://www.unn.ru/e-library/ppp.html?anum=322[48]
Khokhlov A.V. General properties of stress-strain curves at constant strain rate yielding
from linear theory of viscoelasticity.
Problemy prochnosti i plastichnosti
[Problems of Strength and
Plasticity], 2015, vol. 77, no. 1, pp. 60–74 (in Russ.).
Available at:
http://www.unn.ru/e-library/ppp.html?anum=296