Previous Page  29 / 31 Next Page
Information
Show Menu
Previous Page 29 / 31 Next Page
Page Background

Анализ общих свойств кривых ползучести при ступенчатых нагружениях…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

121

[22]

Osokin A.E., Suvorova Yu.V. Nonlinear governing equation of a hereditary medium and

methodology of determining its parameters.

Journal of Applied Mathematics and Mechanics

, 1978,

vol. 42, no. 6, pp. 1214–1222. DOI: 10.1016/0021-8928(78)90072-2

Available at:

http://www.sciencedirect.com/science/article/pii/0021892878900722

[23]

Suvorova Yu.V., Alekseeva S.I. Ninlinear model of isotropic hereditary medium under com-

bined stress.

Mekhanika kompozitnykh materialov

, 1993, no. 5, pp. 602–607 (in Russ.).

[24]

Suvorova Yu.V., Alekseeva S.I. Engineering application of hereditary model to description of

the polymer and polymer matrix composite behavior.

Zavodskaya laboratoriya. Diagnostika mate-

rialov

, 2000, vol. 66, no. 5, pp. 47–51 (in Russ.).

[25]

Alekseeva S.I. Nonlinear hereditary medium taking into account temperature and humidity.

Doklady akademii nauk

, 2001, vol. 376, no. 4, pp. 471–473 (in Russ.).

[26]

Suvorova Yu.V. Yu.N. Rabotnov's nonlinear hereditary-type equation and its applications.

Izvestiya AN SSSR. Mekhanika tverdogo tela

, 2004, no. 1, pp. 174–181 (in Russ.).

[27]

Viktorova I., Dandurand B., Alekseeva S., Fronya M. Creep simulation of polymer nano-

composites based on alternate method of nonlinear optimization.

Mekhanika kompozitnykh ma-

terialov

, 2012, vol. 48, no. 6, pp. 997–1010 (in Russ.).

[28]

Fung Y.C. Stress-strain-history relations of soft tissues in simple elongation, biomechanics:

Its foundations and objectives. New Jersey, Prentice-Hall, 1972. Р. 181–208.

[29]

Fung Y.C. Mathematical models of strain-deformation dependence for soft living tissues.

Mekhanika polimerov

, 1975, no. 5, pp. 850–867 (in Russ.).

[30]

Woo S.L.-Y. Mechanical properties of tendons and ligaments – I. Quasi-static and nonlinear

viscoelastic properties.

Biorheology

, 1982, vol. 19, pp. 385–396.

[31]

Sauren A.A., Rousseau E.P. A concise sensitivity analysis of the quasi-linear viscoelastic

model proposed by Fung.

J. Biomech. Eng

., 1983, vol. 105, no. 1, pp. 92–95.

DOI: 10.1115/1.3138391 Available at:

http://biomechanical.asmedigitalcollection.asme.org/

article.aspx?articleid=1396152&resultClick=3

[32]

Fung Y.C. Biomechanics. Mechanical properties of living tissues. New York, Springer-

Verlag, 1993. 568 p.

[33]

Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D. Linear and quasi-linear viscoelastic charac-

terization of ankle ligaments.

J. Biomech. Eng

., 2000, vol. 122, no. 1, pp. 15–22.

DOI: 10.1115/1.429623 Available at:

http://biomechanical.asmedigitalcollection.asme.org/

article.aspx?articleid=1399078&resultClick=3

[34]

Sarver J.J., Robinson P.S., Elliott D.M. Methods for quasi-linear viscoelastic modeling of soft

tissue: Application to incremental stress-relaxation experiments.

J. Biomech. Eng

., 2003, vol. 125,

no. 5, pp. 754–758. DOI: 10.1115/1.1615247

Available at:

http://biomechanical.asmedigitalcollection.asme.org/

article.aspx?articleid=1410862&resultClick=3

[35]

Abramowitch S.D., Woo S.L.-Y. An improved method to analyze the stress relaxation of

ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.

J. Biomech.

Eng

., 2004, vol. 126, no. 1, pp. 92–97. DOI: 10.1115/1.1645528

Available at:

http://biomechanical.asmedigitalcollection.asme.org/

article.aspx?articleid=1411316&resultClick=3

[36]

Nekouzadeh A., Pryse K.M., Elson E.L., Genin G.M. A simplified approach to quasi-linear

viscoelastic modeling.

J. of Biomechanics

, 2007, vol. 40, no. 14, pp. 3070–3078.

DOI: 10.1016/j.jbiomech.2007.03.019 Available at:

https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2085233