Анализ общих свойств кривых ползучести при ступенчатых нагружениях…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
121
[22]
Osokin A.E., Suvorova Yu.V. Nonlinear governing equation of a hereditary medium and
methodology of determining its parameters.
Journal of Applied Mathematics and Mechanics
, 1978,
vol. 42, no. 6, pp. 1214–1222. DOI: 10.1016/0021-8928(78)90072-2
Available at:
http://www.sciencedirect.com/science/article/pii/0021892878900722[23]
Suvorova Yu.V., Alekseeva S.I. Ninlinear model of isotropic hereditary medium under com-
bined stress.
Mekhanika kompozitnykh materialov
, 1993, no. 5, pp. 602–607 (in Russ.).
[24]
Suvorova Yu.V., Alekseeva S.I. Engineering application of hereditary model to description of
the polymer and polymer matrix composite behavior.
Zavodskaya laboratoriya. Diagnostika mate-
rialov
, 2000, vol. 66, no. 5, pp. 47–51 (in Russ.).
[25]
Alekseeva S.I. Nonlinear hereditary medium taking into account temperature and humidity.
Doklady akademii nauk
, 2001, vol. 376, no. 4, pp. 471–473 (in Russ.).
[26]
Suvorova Yu.V. Yu.N. Rabotnov's nonlinear hereditary-type equation and its applications.
Izvestiya AN SSSR. Mekhanika tverdogo tela
, 2004, no. 1, pp. 174–181 (in Russ.).
[27]
Viktorova I., Dandurand B., Alekseeva S., Fronya M. Creep simulation of polymer nano-
composites based on alternate method of nonlinear optimization.
Mekhanika kompozitnykh ma-
terialov
, 2012, vol. 48, no. 6, pp. 997–1010 (in Russ.).
[28]
Fung Y.C. Stress-strain-history relations of soft tissues in simple elongation, biomechanics:
Its foundations and objectives. New Jersey, Prentice-Hall, 1972. Р. 181–208.
[29]
Fung Y.C. Mathematical models of strain-deformation dependence for soft living tissues.
Mekhanika polimerov
, 1975, no. 5, pp. 850–867 (in Russ.).
[30]
Woo S.L.-Y. Mechanical properties of tendons and ligaments – I. Quasi-static and nonlinear
viscoelastic properties.
Biorheology
, 1982, vol. 19, pp. 385–396.
[31]
Sauren A.A., Rousseau E.P. A concise sensitivity analysis of the quasi-linear viscoelastic
model proposed by Fung.
J. Biomech. Eng
., 1983, vol. 105, no. 1, pp. 92–95.
DOI: 10.1115/1.3138391 Available at:
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1396152&resultClick=3
[32]
Fung Y.C. Biomechanics. Mechanical properties of living tissues. New York, Springer-
Verlag, 1993. 568 p.
[33]
Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D. Linear and quasi-linear viscoelastic charac-
terization of ankle ligaments.
J. Biomech. Eng
., 2000, vol. 122, no. 1, pp. 15–22.
DOI: 10.1115/1.429623 Available at:
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1399078&resultClick=3
[34]
Sarver J.J., Robinson P.S., Elliott D.M. Methods for quasi-linear viscoelastic modeling of soft
tissue: Application to incremental stress-relaxation experiments.
J. Biomech. Eng
., 2003, vol. 125,
no. 5, pp. 754–758. DOI: 10.1115/1.1615247
Available at:
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1410862&resultClick=3
[35]
Abramowitch S.D., Woo S.L.-Y. An improved method to analyze the stress relaxation of
ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
J. Biomech.
Eng
., 2004, vol. 126, no. 1, pp. 92–97. DOI: 10.1115/1.1645528
Available at:
http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1411316&resultClick=3
[36]
Nekouzadeh A., Pryse K.M., Elson E.L., Genin G.M. A simplified approach to quasi-linear
viscoelastic modeling.
J. of Biomechanics
, 2007, vol. 40, no. 14, pp. 3070–3078.
DOI: 10.1016/j.jbiomech.2007.03.019 Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2085233