Стационарное распределение для стохастической системы частиц, взаимодействующих комплексами - page 14

14.
Ван Кампен Н.Г.
Стохастические процессы в физике и химии. М.: Высш. шк.,
1990. 376 с.
15.
Dadvey I.G., Ninham B.W., Staff P.J.
Stochastic models for second-order chemical
reaction kinetics. The equilibrium state // J. Chem. Phys. 1966. Vol. 45. P. 2145–2155.
16.
Anderson D.F., Craciun G., Kurtz T.G.
Product-form stationary distributions for
deficiency zero chemical reaction networks // Bulletin of Mathematical Biology.
2010. Vol. 72. No. 8. P. 1947–1970.
17.
Ланге А.М.
Стационарное распределение в открытой стохастической системе
с парным взаимодействием частиц // Вестник МГТУ им. Н.Э. Баумана. Сер.
Естественные науки. 2005. № 1 (16). С. 3–22.
18.
Павлов И.В.
Приближенно оптимальные доверительные границы для показате-
лей надежности систем с восстановлением // Известия АН СССР. Техническая
кибернетика. 1988. № 3. С. 109–116.
REFERENCES
[1] Gikhman I.I., Skorokhod A.V. Vvedenie v teoriyu sluchaynykh protsessov
[Introduction to the theory of stochastic processes]. Moscow, Nauka Publ., 1977.
568 p.
[2] Sevast’yanov B.A. Vetvyashchiesya protsessy [Branching process]. Moscow, Nauka
Publ., 1971. 436 p.
[3] Sevast’yanov B.A., Kalinkin A.V. Branching stochastic processes with interaction of
particles.
Dokl. Akad. Nauk SSSR
[Proc. Acad. Sci. USSR], 1982, vol. 264, no. 2,
pp. 306–308 (in Russ.).
[4] Kalinkin A.V. Branching Markov process with interaction.
Usp. Mat. Nauk
[Math-
Uspekhi], 2002, vol. 57, no. 2, pp. 23–84 (in Russ.).
[5] Gardiner C.W. Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences. 2d ed. Springer-Verlag, 1985. 442 p. (Russ. ed.: Gardiner K.V.
Stokhasticheskie metody v estestvennykh naukakh. Moscow, Mir, 1986. 528 p.).
[6] Anderson W.J. Continuous-time markov chains: an application-oriented approach.
N.Y., Springer, 1991. 340 p.
[7] Kalinkin A.V. Typical calculation for Markov processes of birth and death
of quadratic type.
Tr. Vseross. Konf. “Prikladnaya teoriya veroyatnostey i
teoreticheskaya informatika”
[Proc. All-Russ. Conf. “Applied probability theory and
theoretical informatics”], Izd. RUDN Publ., 2012, pp. 41–43 (in Russ.).
[8] Leontovich M.A. Basic equations of the kinetic theory of gases in terms of the
theory of stochastic processes.
Zhurnal eksperimental’noy i teoreticheskoy fiziki
[J. Exp. Theor. Phys.], 1935, vol. 2, no. 3–4, pp. 210–230 (in Russ.).
[9] Maslov V.P., Tariverdiev S.E. Asymptotics of Kolmogorov-Feller equations for a
system of a large number of particles.
Sb. VINITI (Baza Dannykh RAN) “Itogi nauki
i tekhniki”. Ser. Teoriya veroyatn. Matem. statist. Teoretich. kibern.
[Collect. Pap.
of All-Russ. Inst. for Sc. Tech. Inf. VINITI (Database RAS) “Science and technique
totals”. Ser.: Probability Theory. Math. Stat. Theor. Cybernetics], Moscow, 1982,
vol. 19, pp. 85–124 (in Russ.).
[10] Chzhun Kay Lay. Odnorodnye tsepi Markova. [Homogeneous Markov Chains].
Moscow, Nauka Publ., 1964. 426 p.
[11] Kalinkin A.V. Stationary distribution of system of interacting particles with discrete
states.
Dokl. Akad. Nauk SSSR
[Proc. Acad. Sci. USSR], 1983, vol. 268, no. 6,
pp. 1362–1364 (in Russ.).
[12] Nicolis G., Prigogine I. Self-organization in nonequilibrium systems John Wiley
& Sons, 1977. 491 p. (Russ. Ed.: Nicolis G., Prigogine I. Samoorganizatsiya v
neravnovesnykh sistemakh. Moscow, Mir Publ., 1979. 512 p.).
[13] Bocharov P.P., Pechinkin A.V. Teoriya massovogo obsluzhivaniya [Queuing theory].
Moscow, RUDN Publ., 1995. 529 p.
16
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 4
1...,4,5,6,7,8,9,10,11,12,13 15
Powered by FlippingBook