[2] Deryagin B.V., Churaev N.V. Smachivayushchie plenki [Wetting films]. Moscow,
Nauka Publ., 1984. 160 p.
[3] Deryagin B.V., Churaev N.V., Muler V.M. Poverkhnostnye sily [Surface forces].
Moscow, Nauka Publ., 1985. 399 p.
[4] Romanov A.S. The way of hydro dynamic description of partially wetting liquid
spreading over the flat hard surface.
Kolloidn. Zh
. [Colloid J.], 1990, vol. 52, no. 1,
pp. 93–99 (in Russ.).
[5] Zhen
P.Zh. Wetting: statics and dynamics.
Usp. Fiz. Nauk
[Physics-Uspekhi], 1987,
vol. 151, no. 4, pp. 619–681 (in Russ.).
[6] Pukhnachev V.V., Solonnikov V.A. Revisiting the dynamic wetting angle.
Prikl. mat.
i mekh.
(J. Appl. Math. Mech
.
), 1982, vol. 46, no. 6, pp. 961–971.
[7] Radoev B., St´eckelhuber Kl.W., Tsekov R., Letocart Ph
.
Wetting Film Dynamics and
Stability.
Col. Interface Sci. Ser. 3
, 2007, pp. 151–172.
[8] Bing Dai, Gary Leal L., Redondo A. Disjoining Pressure for Nonuniform Thin Films.
Phys. Rev. E
, 2008, vol. 78, p. 061602.
[9] Aliev I.N., Yurchenko S.O. Nonlinear waves spreading over the nonviscous
conductive liquid surface in the electric field.
Izv. Akad. Nauk, Mekh. Zhidk. Gaza
[Fluid Dyn.], 2009, no. 5, pp. 137–148 (in Russ.).
[10] Aliev I.N., Yurchenko S.O. Perturbation transition of the charged interface of non-
miscible nonviscous liquids in the clearance between two electrodes.
Izv. Akad. Nauk,
Mekh. Zhidk. Gaza
[Fluid Dyn.], 2010, no. 5, pp. 156–166 (in Russ.).
[11] Saramago B. Thin liquid wetting films.
Current Opinion in Colloid & Interface
Science
, 2010, vol. 15, no. 5, pp. 330–340.
[12] Ren W., Hu D.E.W. Continuum Models for the Contact Line Problem.
Physics of
Fluids
. 2010, vol. 22, no. 10, p. 102103–19.
[13] Patra Ajoy, Bandyopadhyay Dipankar Tomar, Gaurav, Sharma Ashutosh, Biswas
Gautam. Instability and Dewetting of Ultrathin Solid Viscoelastic Films on
Homogeneous and Heterogeneous Substrates.
Journal of Chemical Physics
, 2011,
vol. 134, no. 6, p. 064705–11.
[14] Boinovich L., Emelyanko A. Wetting and Surface Forces.
Adv. Colloid Interface Sci
.,
2011, vol. 165, pp. 60–69.
[15] Tsekov R., Toshev B.V. Capillary Pressure of Van der Waals Liquid Nanodrops.
Kolloidn. Zh
. [Colloid J.], 2012, vol. 74, no. 2, p. 286.
[16] Colosqui C.E., Kavousanakis M.E., Papathanasiou A.G., Kevrekidis I.G. Mesoscopic
Model for Microscale Hydrodynamics and Interfacial Phenomena: Slip, Films, and
Contact-Angle Hysteresis.
Phys. Rev. E. Statistical, Nonlinear, and Soft Matter
Physics
, 2013, vol. 87, no. 1, p. 013302.
[17] Nikolov A., Wasan D. Wetting-Dewetting Films: The Role of Structural Forces.
Advances in Colloid and Interface Science
, 2014, vol. 206, pp. 207–221.
[18] Boinovich L., Emelyanko A
.
The Prediction of Wettability of Curved Surfaces on
the Basis of the Isotherms of the Disjoining Pressure.
Col. Surf. A: Physicochem.
Eng. Aspects
, 2011, vol. 383, pp. 10–16.
[19] Popescu M.N., Oshanin G., Dietrich S., Cazabat A.-M. Precursor Films in Wetting
Phenomena.
J. Phys.: Condens. Matter
., 2012, vol. 24, p. 243102.
[20] Moulton D.E., Lega J. Effect of Disjoining Pressure in a Thin Film Equation with
Nonuniform Forcing.
European J. of Applied Math
., 2013, vol. 24, pp. 887–920.
[21] Snoeijer Jacco H., Andreotti Br
.
Moving Contact Lines: Scales, Regimes, and
Dynamical Transitions.
Annu. Rev. Fluid Mech
., 2013, vol. 45, pp. 269–292.
[22] Sibley D.N., Nold A., Savva N., Kalliadasis S. A Comparison of Slip, Disjoining
Pressure, and Interface Formation Models for Contact Line Motion Through
Asymptotic Analysis of Thin Two-Dimensional Droplet Spreading.
J. of Engineering
Math
., 2014.
98
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 5