Обобщенная трехмерная теория устойчивости упругих тел. Ч. 1. Конечные деформации - page 17

[4] Bazant Z.P., Cedolin L. Stability of structures. Oxford, Oxford Univ. Press., 1990.
316 p.
[5] Iyengar N.G.R. Structural stability of columns and plates. New Delhi, Affiliated
East-West Press. 1986. 284 p.
[6] Vasil’ev V.V. Mekhanika kompozitsionnykh materialov [Mechanics of composite
materials]. Moscow, Mashinostroenie Publ., 1984. 272 p.
[7] Grigolyuk E.I., Chulkov P.P. Ustoychivost’ i kolebaniya trekhsloynykh obolochek.
[Stability and oscillations of sandwich shells]. Мoscow, Mashinostroenie Publ., 1973.
172 p.
[8] Novozhylov V.V. Osnovy nelineynoy teorii uprugosti [Fundamentals of the nonlinear
theory of elasticity]. Мoscow, URSS Publ., 2003. 208 p.
[9] Lur’e A.I. Nelineynaya teoriya uprugosti [Non-linear theory of elasticity]. Мoscow,
Nauka Publ., 1980. 512 p.
[10] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear continuum
mechanics]. Moscow, Fizmatlit Publ., 2009. 624 p.
[11] Guz’ A.N. Osnovy trekhmernoy teorii ustoychivosti deformiruemykh tel
[Fundamentals of the three-dimensional theory of stability of deformable bodies].
Kiev, Vishcha Shkola Publ., 1986. 512 p.
[12] Kokhanenko Yu.V. The three-dimensional stability of a cylinder on the heterogeneous
initial state.
Dopov. Nats. Akad. Nauk Ukr.
[Rep. Natl. Acad. Sci. Ukr.], 2009, no. 1,
pp. 60–62 (in Russ.).
[13] Bazant Z.P. Stability of elastic, anelastic and disintegrating structures: a conspectus
of main results.
Appl. Math. Mech., ZAMM
, 2000, vol. 80, no. 11–12, pp. 709–732.
[14] Dimitrienko Yu.I. Novel viscoelastic models for elastomers under finite strains.
Eur.
J. Mech. A: Solids
, 2002, vol. 21, no. 1, pp. 133–150.
[15] Dimitrienko Yu.I., Dashtiev I.Z. Models of viscoelastic behavior of elastomers at
finite deformations.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2001, no. 1, pp. 21–41
(in Russ.).
[16] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T. 2: Universal’nye zakony mekhaniki
i elektrodinamiki sploshnoy sredy [Continuum mechanics. Vol. 2: Universal
laws of mechanics and electrodynamics of continuous media]. Мoscow, MGTU
im. N.E. Baumana Publ., 2011. 464 p.
Статья поступила в редакцию 29.03.2013
Юрий Иванович Димитриенко — д-р физ.-мат. наук, профессор, заведую-
щий кафедрой “Вычислительная математика и математическая физика” МГТУ
им. Н.Э. Баумана. Автор более 250 научных работ в области механики сплошных
сред, вычислительной механики, механики и термомеханики композитов, математи-
ческого моделирования в науке о материалах, вычислительной газодинамики.
МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,
д. 5.
Yu.I. Dimitrienko — Dr. Sci. (Phys.–Math.), professor, head of “Computational
Mathematics and Mathematical Physics” department of the Bauman Moscow State
Technical University. Author of more than 250 publications in the field of mechanics
of continua, computational mathematics, mechanics and thermomechanics of composites,
mathematical simulation in the science of materials, computational gas dynamics.
Bauman Moscow State Technical University, Vtoraya Baumanskaya ul., 5, Moscow,
105005 Russian Federation.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2013. № 4
95
1...,7,8,9,10,11,12,13,14,15,16 17
Powered by FlippingBook