[4] Mezhennaya N.M. Limit theorems for the number of (
a, d
)-series of given weight
in a Sequence of Independent Random Quantities.
Inzhenernyy zhurnal: nauka i
innovatsii. El. n.-t. izdanie
[Engineering Journal: Science and Innovations], 2012,
vol. 4, no. 4, p. 20–28 (in Russ.).
[5] Sevast’yanov B.A. Poisson limit law for a scheme of sums of dependent random
variables.
Teoriya veroyatnostey i ee primeneniya
[Theory of Probability and its
Applications, 1972, vol. 17, no. 4, pp. 695–699], 1972, vol. 17, no. 4, pp. 733–738
(in Russ.). DOI: 10.1137/1117082
[6] Kolchin V.F., Sevastyanov B.A., Chistyakov V.P. Sluchainye razmescheniya. Teoriya
veroyatnostei i matematicheskaya statistika [Random placements. Probability theory
and mathematical stattistics]. Moscow, Nauka Publ., 1976. 223 p.
[7] Mikhailov V.G. On asymptotic properties of numbers of event series. Trudy po
Diskretnoi Matematike [Proceedings on discrete mathematics], 2006, vol. 9. pp. 152–
163 (in Russ.).
[8] Barbour A.D., Holst L., Janson S. Poisson Approximation. Oxford: Oxford Univ.
Press, 1992. 278 p.
[9] Barbour A.D., Chen L.H.Y., eds. Lecture note series. Institute of mathematical
sciences, National institute of Singapore. In 5 volumes. Vol. 4. An introduction
to Stein’s method. Singapore: Singapore University Press. 2005. 226 p.
[10] Barbour A.D., Chen L.H.Y., eds. Lecture note series. Institute of mathematical
sciences, National institute of Singapore. In 5 volumes. Vol. 5. Stein’s method and
applications. Singapore: Singapore University Press, 2005. 297 p.
[11] Mikhailov V.G. Explicit estimators in limit theorems for sums of random indicators.
Obozrenie prikladnoy i promishllennoy matematiki
[OP&PM Surveys in Applied and
Industrial Mathematics], 1994, vol. 1, no. 4, pp. 580–617 (in Russ.).
[12] Shiryaev A. N. Veroyatnost’ [Probability]. Moscow, Nauka Publ., 1980. 576 p.
[13] Golic J.Dj. Constrained embedding probability for two binary strings.
SIAM J. Discrete Math., 1996, vol. 9, no. 3, pp. 360–364. DOI:
10.1137/S0895479894246917
[14] Mikhailov V.G., Mezhennaya N.M. Bounds for the probability of a constrained
embedding of one discrete sequence into another.
Diskretnaya matematika
[Discrete
Mathematics and Applications], 2005, vol. 15, no. 4, pp. 377–386 (in Russ.). DOI:
10.1515/156939205774464864
Статья поступила в редакцию 25.09.2013
Наталья Михайловна Меженная — канд. физ.-мат. наук, доцент кафедры “Прикладная
математика” МГТУ им. Н.Э. Баумана. Автор 10 научных работ в области дискретных
задач теории вероятностей, предельных теорем и их применения в математической
статистике.
МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,
д. 5.
N.M. Mezhennaya — Cand. Sci. (Phys.-Math.), assoc. professor of “Applied mathematics”
department of Bauman Moscow State Technical University. Author of 10 publications in
the field of discrete problems of probability theory, limiting theorems and their application
in mathematical statistics.
Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5, Moscow,
105005 Russian Federation.
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2014. № 3
25