Background Image
Previous Page  12 / 12
Information
Show Menu
Previous Page 12 / 12
Page Background

[2] Rabinowitz P. Free vibration for a semilinear wave equation.

Comm. Pure Aple.

Math.

, 1978, vol. 31, no. 1, pp. 31–68.

[3] Bahri A., Brezis H. Periodic solutions of a nonlinear wave equation.

Proc. Roy. Soc.

Edinburgh Sect

. A, 1980, vol. 85, pp. 310–320.

[4] Brezis H., Nirenberg L. Forced vibration for a nonlinear wave equations.

Comm.

Pure Aple. Math

., 1978, vol. 31, no. 1, pp. 1–30.

[5] Plotnikov P.I. Existence of a Countable Set of Periodic Solutions of the Forced

Vibration Problem for a Weakly Nonlinear Wave Equation.

Mat. Sb

. [Sbornik:

Mathematics], 1988, vol. 136 (178), no. 4 (8), pp. 546–560 (in Russ.).

[6] Feireisl E. On the existence of periodic solutions of a semilinear wave equation with

a superlinear forcing term.

Chechosl. Math. J

., 1988, vol. 38, no. 1, pp. 78–87.

[7] Rudakov I.A. Nonlinear Vibrations of a String.

Vestn. Mosk. Univ., Ser. 1: Mat.,

Mekh

. [Moscow Univ. Math., Mech. Bull.], 1984, no. 2, pp. 9–13 (in Russ.).

[8] Rudakov I.A. Periodic Solutions of Nonlinear Wave Equation with Non-Regular

Coefficients.

Mat. Zametki

[Math. Notes], 2004, vol. 76, iss. 3, pp. 427–438 (in

Russ.).

[9] Shuguan J. Time periodic solutions to a nonlinear wave equation with

x

-dependet

coefficients.

Calc. Var

., 2008, vol. 32, pp. 137–153.

[10] Rudakov I.A. Periodic Solutions of a Quasilinear Wave Equation with Variable

Coefficients.

Mat. Sb

. [Sbornik: Mathematics], 2007, vol. 198, no. 4 (8), pp. 546–560

(in Russ.).

[11] Kondrat’ev V.A., Rudakov I.A. Periodic Solutions of a Quasilinear Wave Equation.

Mat. Zametki

[Math. Notes], 2009, vol. 85, iss. 1, pp. 36–53 (in Russ.).

[12] Trikomi F. Differentsial’nye uravneniya [Differential Equations]. Moscow, URSS

Publ., 2003. 351 p.

[13] Rudakov I.A. Periodic Solutions of Nonlinear Wave Equation with Homogeneous

Boundary Conditions.

Izv. Akad. Nauk, Ser. Mat

. [Bull. Russ. Acad. Sci.: Math.],

2006, no. 1, pp. 1–10 (in Russ.).

[14] Feirisl E. On the existence of the multiplicity periodic solutions of rectangle thin

plate.

Chechosl. Math. J

., 1998, vol. 37, no. 2, pp. 334–341.

[15] Rudakov I.A. On the Time-Periodic Solutions of Quasi-Linear Wave Equation.

Tr.

MIAN

[Proc. Steklov Math. Institute], 2010, vol. 270, pp. 226–232 (in Russ.).

Статья поступила в редакцию 12.02.2015

Рудаков Игорь Алексеевич — д-р физ.-мат. наук, профессор кафедры “Прикладная

математика” МГТУ им. Н.Э. Баумана. Специалист в области прикладной математики.

МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,

д. 5.

Rudakov I.A. —

D.Sc.

(Phys.-Math.), Professor of Mathematics, Department of Applied

Mathematics, Bauman Moscow State Technical University, author specializes in the field

of applied mathematics.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation.

Просьба ссылаться на эту статью следующим образом:

Рудаков И.А. Периодические колебания неоднородной струны с закрепленными

концами // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2015. № 4.

C. 3–14.

Please cite this article in English as:

Rudakov I.А. Periodic oscillations of an unhomogeneous string with fixed ends.

Vestn.

Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow

State Tech. Univ., Nat. Sci.], 2015, no. 4, pp. 3–14.

14

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4