[2] Rabinowitz P. Free vibration for a semilinear wave equation.
Comm. Pure Aple.
Math.
, 1978, vol. 31, no. 1, pp. 31–68.
[3] Bahri A., Brezis H. Periodic solutions of a nonlinear wave equation.
Proc. Roy. Soc.
Edinburgh Sect
. A, 1980, vol. 85, pp. 310–320.
[4] Brezis H., Nirenberg L. Forced vibration for a nonlinear wave equations.
Comm.
Pure Aple. Math
., 1978, vol. 31, no. 1, pp. 1–30.
[5] Plotnikov P.I. Existence of a Countable Set of Periodic Solutions of the Forced
Vibration Problem for a Weakly Nonlinear Wave Equation.
Mat. Sb
. [Sbornik:
Mathematics], 1988, vol. 136 (178), no. 4 (8), pp. 546–560 (in Russ.).
[6] Feireisl E. On the existence of periodic solutions of a semilinear wave equation with
a superlinear forcing term.
Chechosl. Math. J
., 1988, vol. 38, no. 1, pp. 78–87.
[7] Rudakov I.A. Nonlinear Vibrations of a String.
Vestn. Mosk. Univ., Ser. 1: Mat.,
Mekh
. [Moscow Univ. Math., Mech. Bull.], 1984, no. 2, pp. 9–13 (in Russ.).
[8] Rudakov I.A. Periodic Solutions of Nonlinear Wave Equation with Non-Regular
Coefficients.
Mat. Zametki
[Math. Notes], 2004, vol. 76, iss. 3, pp. 427–438 (in
Russ.).
[9] Shuguan J. Time periodic solutions to a nonlinear wave equation with
x
-dependet
coefficients.
Calc. Var
., 2008, vol. 32, pp. 137–153.
[10] Rudakov I.A. Periodic Solutions of a Quasilinear Wave Equation with Variable
Coefficients.
Mat. Sb
. [Sbornik: Mathematics], 2007, vol. 198, no. 4 (8), pp. 546–560
(in Russ.).
[11] Kondrat’ev V.A., Rudakov I.A. Periodic Solutions of a Quasilinear Wave Equation.
Mat. Zametki
[Math. Notes], 2009, vol. 85, iss. 1, pp. 36–53 (in Russ.).
[12] Trikomi F. Differentsial’nye uravneniya [Differential Equations]. Moscow, URSS
Publ., 2003. 351 p.
[13] Rudakov I.A. Periodic Solutions of Nonlinear Wave Equation with Homogeneous
Boundary Conditions.
Izv. Akad. Nauk, Ser. Mat
. [Bull. Russ. Acad. Sci.: Math.],
2006, no. 1, pp. 1–10 (in Russ.).
[14] Feirisl E. On the existence of the multiplicity periodic solutions of rectangle thin
plate.
Chechosl. Math. J
., 1998, vol. 37, no. 2, pp. 334–341.
[15] Rudakov I.A. On the Time-Periodic Solutions of Quasi-Linear Wave Equation.
Tr.
MIAN
[Proc. Steklov Math. Institute], 2010, vol. 270, pp. 226–232 (in Russ.).
Статья поступила в редакцию 12.02.2015
Рудаков Игорь Алексеевич — д-р физ.-мат. наук, профессор кафедры “Прикладная
математика” МГТУ им. Н.Э. Баумана. Специалист в области прикладной математики.
МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, 2-я Бауманская ул.,
д. 5.
Rudakov I.A. —
D.Sc.(Phys.-Math.), Professor of Mathematics, Department of Applied
Mathematics, Bauman Moscow State Technical University, author specializes in the field
of applied mathematics.
Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation.
Просьба ссылаться на эту статью следующим образом:
Рудаков И.А. Периодические колебания неоднородной струны с закрепленными
концами // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2015. № 4.
C. 3–14.
Please cite this article in English as:
Rudakov I.А. Periodic oscillations of an unhomogeneous string with fixed ends.
Vestn.
Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow
State Tech. Univ., Nat. Sci.], 2015, no. 4, pp. 3–14.
14
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2015. № 4