Previous Page  14 / 17 Next Page
Information
Show Menu
Previous Page 14 / 17 Next Page
Page Background

О новой форме представления решения задачи Коши…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1

39

ЛИТЕРАТУРА

1.

Березин Ф.А., Шубин М.А.

Уравнение Шредингера. М.: Изд-во МГУ, 1983. 392 с.

2.

Smolyanov O.G., Tokarev A.G., Truman A.

Hamiltonian Feynman path integrals via the

Chernoff formula // J. Math. Phys. 2002. Vol. 43. Iss. 10. P. 5161–5171.

3.

Feynman R.P.

Space-time approach to nonrelativistic quantum mechanics // Reviews

of Modern Physics. 1948. Vol. 20. Iss. 2. P. 367–387.

4.

Feynman R.P.

An operation calculus having applications in quantum electrodynamics //

Phys. Rev. 1951. Vol. 84. P. 108–128.

5.

Smolyanov O.G.

Feynman formulae for evolutionary equations. Trends in stochastic

analysis // London Mathematical Society Lecture Notes Series. 2009. Vol. 353.

6.

Smolyanov O.G.

Schrödinger type semigroups via Feynman formulae and all that //

Proceedings of the Quantum Bio-Informatics V. Tokyo University of Science, Japan, 7–12

March 2011. World Sc. 2013.

7.

Бутко Я.А.

Формулы Фейнмана для эволюционных полугрупп // Наука и образо-

вание. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. № 3. DOI: 10.7463/0314.0701581

URL:

http://technomag.bmstu.ru/doc/701581.html

8.

Plyashecnik A.S.

Feynman formula for Schrödinger-Type equations with time- and space-

dependent coefficients // Russian Journal of Mathematical Physics. 2012. Vol. 19. No. 3.

P. 340–359.

9.

Plyashecnik A.S.

Feynman formulas for second-order parabolic equations with variable

coefficients // Russian Journal of Mathematical Physics. 2013. Vol. 20. No. 3. P. 377–379.

10.

Remizov I.D.

Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a

Feynman formula // Russian Journal of Mathematical Physics. 2012. Vol. 19. No. 3.

P. 360–372.

11.

Remizov I.D.

Solution to a parabolic differential equation in Hilbert space via Feynman

formula-I // Модел. и анализ информ. систем. 2015. Т. 22. № 3. C. 337–355.

12.

Remizov I.D.

Quasi-Feynman formulas — a method of obtaining the evolution operator for

the Schrödinger equation // Journal of Functional Analysis. 2016. Vol. 270. P. 4540–4557.

13.

Pazy A.

Semigroups of linear operators and applications to partial differential equations.

New York: Springer-Verlag, 1983. 277 p.

14.

Engel K.-J., Nagel R.

One-parameter semigroups for linear evolution equations. New York:

Springer, 2000. 586 p.

15.

Engel K.-J., Nagel R.

A short course on operator semigroups. New York: Springer Science +

Business Media, 2006. 243 p.

16.

Chernoff

Paul R.

Note on product formulas for operator semigroups // Journal

of Functional Analysis. 1968. Vol. 2. Iss. 2. P. 238–242.

17.

Богачев В.И., Смолянов О.Г.

Действительный и функциональный анализ: универси-

тетский курс. Ижевск: НИЦ «Регулярная и хаотичная динамика», 2009. 724 с.

18.

Orlov Yu.N., Sakbaev

V.Zh.

, Smolyanov O.G.

Feynman formulas as a method of averaging

random Hamiltonians // Proceedings of the Steklov Institute of Mathematics. August 2014.

Vol. 285. Iss. 1. P. 222–232.

19.

Smolyanov O.G., Weizs H. Väcker, Wittich O.

Chernoff

's theorem and discrete time

approximations of Brownian motion on manifolds // Potential Analysis. February 2007.

Vol. 26. Iss. 1. P. 1–29.