О новой форме представления решения задачи Коши…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1
41
appears to be a good model case for various methods of
solving partial differential equations. In this paper we study
the problem of representability of the solution of Cauchy
problem in the form of the quasi-Feynman formula, and
provide a positive answer to this problem. The quasi-
Feynman formula constructed in the paper is a new type of
expression, similar to the Feynman formula. It includes
multiple integrals of an infinitely increasing multiplicity.
The quasi-Feynman formulas are easier to prove
(compared to the Feynman formulas) but they provide
lengthier expression for the solution. The paper may be of
interest to the ones who work in the fields of functional
analysis and mathematical physics
REFERENCES
[1] Berezin F.A., Shubin M.A. Uravnenie Shredingera [Shrödinger equation]. Moscow,
Moscow State University Publ., 1983. 392 p.
[2] Smolyanov O.G., Tokarev A.G., Truman A. Hamiltonian Feynman path integrals via the
Chernoff formula.
J. Math. Phys
., 2002, vol. 43, iss. 10, pp. 5161–5171.
[3] Feynman R.P. Space-time approach to nonrelativistic quantum mechanics.
Reviews
of Modern Physics
, 1948, vol. 20, iss. 2, pp. 367–387.
[4] Feynman R.P
.
An operation calculus having applications in quantum electrodynamics.
Phys. Rev
., 1951, vol. 84, pp. 108–128.
[5] Smolyanov O.G
.
Feynman formulae for evolutionary equations. Trends in stochastic
analysis.
London Mathematical Society Lecture Notes Series
, 2009, vol. 353.
[6] Smolyanov O.G. Schrödinger type semigroups via Feynman formulae and all that.
Proceedings of the Quantum Bio-Informatics V
. Tokyo University of Science, Japan, 7–12
March 2011. World Sc. 2013.
[7] Butko Ya.A. Feynman formulae for evolution semigroups.
Nauka i obrazovanie
.
MGTU
im. N.E. Baumana
[Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 3,
pp. 95–132. DOI: 10.7463/0314.0701581 Available at:
http://technomag.neicon.ru/en/doc/701581.html
[8] Plyashecnik A.S. Feynman formula for Schrödinger-Type equations with time- and space-
dependent coefficients.
Russian Journal of Mathematical Physics
, 2012, vol. 19, no. 3,
pp. 340–359.
[9] Plyashecnik A.S. Feynman formulas for second-order parabolic equations with variable
coefficients.
Russian Journal of Mathematical Physics
, 2013, vol. 20, no. 3, pp. 377–379.
[10] Remizov I.D. Solution of a Cauchy problem for a diffusion equation in a Hilbert space by
a Feynman formula.
Russian Journal of Mathematical Physics
, 2012, vol. 19, no. 3, pp. 360–372.
[11] Remizov I.D. Solution to a parabolic differential equation in Hilbert space via Feynman
formula-I.
Model. i analiz inform. sistem
[Modelling and Analusis of Information Systems],
2015, vol. 22. no 3. pp. 337–355 (in Russ.).
[12] Remizov I.D. Quasi-Feynman formulas — a method of obtaining the evolution operator
for the Schrödinger equation.
Journal of Functional Analysis
, 2016, vol. 270, pp. 4540–4557.