Previous Page  18 / 19 Next Page
Information
Show Menu
Previous Page 18 / 19 Next Page
Page Background

М.Б. Гавриков, В.В. Савельев

76

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1

than an approximate approach (the model equations). We

have numerically studied the solutions of a system of

8 partial differential equations. Findings of the research show

that the solitary waves interact with great precision as the

solitons, i.

e. solitary waves being the solutions to various

model equations. The considered solitary waves transfer

dense, strongly magnetized plasmoids with velocities of the

Alfven velocity order. As the main difference method for

solving the system of equations we used the natural generali-

zation of the classical two-step Lax — Wendroff difference

scheme for hyperbolic equation

REFЕRENCES

[1]

Novikov S.P., Manakov S.V., Pitaevsky L.P., Zakharov V.E. Theory of solitons: The inverse

scattering method. N.Y., Plenum, 1984.

[2]

Faddeev L.D., Takhtajan L.A. Hamiltonian methods in the theory of solitons. Berlin,

Springer-Verlag, 1987.

[3]

Lonngren K., Scott A., eds. Solitons in action. N.Y., Academic Press, 1978.

[4]

Zakharov V.E. Collapse of langmuir waves.

JETP

, 1972, vol. 35, no. 5, pp. 908−916.

[5]

Kadomtsev B.B., Petviashvili V.I. On the stability of solitary waves in weakly dispersing

media.

Soviet Physics Doklady

, 1970, vol. 15, p. 539.

[6]

Mio K., Ogino T., Minamy K., Takeda S

.

Modified nonlinear Schrödinger equation for

Alfven waves propagating along the magnetic field in cold plasma.

J. Phys. Soc. Japan

, 1976,

vol. 41, pp. 265−271.

[7]

Gavrikov M.B. Cold plasma aperiodic oscillations.

Preprint no. 33. Moscow, Keldysh Inst.

Prikl. Mat. of the Academy of Sciences of the USSR

, 1991. 28 p.

[8]

Braginskiy S.I. Yavleniya perenosa v plazme. Voprosy teorii plazmy. Vyp. 1 [Transport

phenomena in plasma. The problems of the plasma theory. Vol. 1]. Moscow, Atomizdat Publ.,

1963, pp. 183−272.

[9]

Gavrikov M.B., Sorokin R.V. Homogeneous deformation of a two-fluid plasma with al-

lowance for electron inertia.

Fluid Dynamics

, 2008, vol. 43, iss. 6, pp. 977−989.

DOI: 10.1134/S0015462808060197

[10] Kulikovskiy A.G., Lyubimov G.A

.

Magnetohydrodynamics

.

Addison-Wesley, Reading,

Mass, 1965.

[11]

Morozov A.I., Solov'ev L.S. Statsionarnye techeniya plazmy v magnitnom pole. Voprosy

teorii plazmy. Iss. 8 [Steady plasma flows in a magnetic field. Problems in the plasma theory].

Moscow, Atomizdat Publ., 1974, pp. 3−86.

[12]

Saffman P.G

.

Propagating of a solitary wave along a magnetic field in a cold collision-free

plasma.

J. Fluid Mech

., 1961, vol. 11, pp. 16−20.

[13]

Gavrikov M.B., Savel'ev V.V., Tayurskiy A.A. Solitons in two-fluid magnetohydrodyna-

mics with non-zero electron inertia.

Izvestiya vuzov. Prikladnaya nelineynaya dinamika

[Izvestiya VUZ. Applied Nonlinear Dynamics], 2010, vol. 18, no. 4, pp. 132−147 (in Russ.).

[14]

Roach P. Computational fluid dynamics. Hermosa Publishers Albuquerque, 1976.