Графовый подход при построении конечно-элементной модели упругих тел…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
69
The graph of the whole body is built following the same
rule as in the elementary cell. The method is based on
transforming generalized coordinates of a solid body sepa-
rated into pieces to a system of generalized coordinates of
the initial solid body. The specific nature of the graph
model lies in the possibility to construct these matrices
with no need for their numerical inversion. With the use of
a unit cell having 8 degrees of freedom, the strain field is
approximated by linear polynomials (with corresponds to
approximated of the displacement fields by quadratic
polynomials). The standard finite-element method requires
16 degrees of freedom (elements with 8 nodes) for the same
purpose. The proposed graphical approach thus reduces
the number of equations that describe the model. We
provide numerical examples which prove the efficiency of
the method
REFERENCES
[1]
Trent H. Isomorphism between oriented linear graphs and lumped physical systems.
J. of the
Acoustical Soc. of America,
1955, vol. 27, no. 3, pp. 500–527. DOI: 10.1121/1.1907949 Available at:
http://asa.scitation.org/doi/abs/10.1121/1.1907949[2]
Kuzovkov E.G. Configuration and parameters of a graph model of an elastic body.
Strength of
Materials
, 1986, vol. 18, iss. 4, pp. 528–534. DOI: 10.1007/BF01524081
Available at:
http://link.springer.com/article/10.1007%2FBF01524081[3]
Kuzovkov E.G. Equations of state of graph model of elastic solid.
Strength of Materials
, 1986,
vol. 18, iss. 5, pp. 698–704. DOI: 10.1007/BF01522789
Available at:
http://link.springer.com/article/10.1007%2FBF01522789[4]
Kuzovkov E.G. Axisymmetric graph model of an elastic solid.
Strength of Materials
, 1996,
vol. 28, iss. 6, pp. 470–485. DOI: 10.1007/BF02209319
Available at:
http://link.springer.com/article/10.1007%2FBF02209319[5]
Kuzovkov E.G. Graphical model of an elastic medium in a cartesian coordinate system.
Strength of Materials
, 1993, vol. 25, iss. 12, pp. 906–914. DOI: 10.1007/BF00774638
Available at:
http://link.springer.com/article/10.1007%2FBF00774638[6]
Tyrymov A.A. A singular element of the graph model of an elastic medium in a cartesian co-
ordinate system.
Vychislitel'naya mekhanika sploshnykh sred
, 2011, vol. 4, no. 4, pp. 125–136 (in
Russ.). DOI: org/10.7242/1999-6691/2011.4.4.47
Available at:
http://www2.icmm.ru/journal/download/CCMv4n4a14.pdf[7]
Tyrymov A.A. Numerical modeling and calculation of compliance for centrally cracked
specimen based on graph model of elastic solid.
Trudy MAI
, 2014, no. 77 (in Russ.).
Available at:
http://www.mai.ru/upload/iblock/e70/e7020711c2e38b9154c74d87fb727ed5.pdf[8]
Tyrymov A.A. Numerical solution of axisymmetric problem of the theory of elasticity on the
basis of continuum graph model. V
estnik Samarskogo gos. tekhn. un-ta. Seriya: Fiziko-
matematicheskie nauki
[Vestnik of Samara State Technical University (Technical Sciences Series)],
2012, no. 2, pp. 103–114 (in Russ.). DOI: 10.14498/vsgtu914
Available at:
http://www.mathnet.ru/links/a093db6b43ff5ed8ebf1b212652ab489/vsgtu914.pdf