Previous Page  16 / 16
Information
Show Menu
Previous Page 16 / 16
Page Background

Предельные теоремы для случайного блуждания в полуплоскости с перескоком границы

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6

31

Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 2, pp. 38–52

(in Russ.). DOI: 10.18698/1812-3368-2015-2-38-52

[3] Sevast'yanov B.A. Vetvyashchiesya protsessy [Branching processes]. Moscow, Nauka Publ.,

1971. 436 p. [German transl.: Sewastjanow B.A. Verzweigungsprozesse. Berlin, Akademie-

Verlag, 1974].

[4] Otter R

.

The multiplicative process.

Ann. Math. Statistics

, 1949, vol. 20, no. 2, pp. 206–224.

[5] Kalinkin A.V

.

Final probabilities for a random branching process with interaction

of particles.

Soviet Math. Dokl

., 1983, vol. 27, no. 2, pp. 493–497.

[6] Kalinkin A.V. On the probability of the extinction of branching process with interaction

of particles

. Theory of Probability and Its Applications

, 1982, vol. 27, no. 1, pp. 201–205.

[7] Evgrafov M.A. Analytic functions. Dover Publ., 1978. 336 p.

[8] Evgrafov M.A., Bezhanov K.A., Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I. A collection

of problems on the theory of analytic functions. Moscow, Nauka Publ., 1972.

[9] Athreya K.B., Ney P.E. Branching processes. Berlin, Springer-Verlag, 1972. 287 p.

[10] Gnedenko B.V. The theory of probability. AMS Chelsea Publishing, Providence, 2005.

529 p.

[11] Oberhettinger F. Fourier transforms of distributions and their inverses. A collection

of tables. N.Y., London, Academic Press, 1973. 167 p.

[12] Bateman H., Erdélyi A. Tables of integral transforms. Vol. 1. N.Y., McGraw-Hill, 1954.

451 p.

[13] Lange A.M. On the distribution of the number of final particles in a branching process

with transformations and pairwise interactions.

Theory of Probability and Its Applications

,

2007, vol. 51, no. 4, pp. 704–714.

[14] Mastikhin A.V

.

Solving stationary first Kolmogorov's equation for Markovian process of

epidemic developing according to the scheme

1 2

1 3

;

T T T T

  

1 3

1

;

T T T

 

1

0.

T

Vestn.

Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow

State Tech. Univ., Nat. Sci.], 2005, no. 2, pp. 75–86 (in Russ.).

Kalinkin A.V.

— Dr. Sci. (Phys.-Math.), Professor of Higher Mathematics Department,

Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation).

Please cite this article in English as:

Kalinkin A.V. Limit Theorems for Random Walk in a Half-Plane with Jump across the Border.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Mos-

cow State Tech. Univ., Nat. Sci.], 2016, no. 6, pp. 16–31.

DOI: 10.18698/1812-3368-2016-6-16-31