Previous Page  12 / 13 Next Page
Information
Show Menu
Previous Page 12 / 13 Next Page
Page Background

Нули полиномов по системе типа Хаара

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

15

POLINOMIAL ZEROS ACCORDING TO THE HAAR-TYPE SYSTEM

E.A. Vlasova

elena.a.vlasova@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

We obtained an accurate estimate for the Lebesgue measure of

the polynomial zeros set of arbitrarily large order with non-

zero coefficients according to the generalized Haar system for

the case of a bounded sequence of parameters defining a given

system. Similar problems were investigated for the case of an

unbounded sequence of parameters of the generalized Haar

system. In the latter case it is shown that there is always a

polynomial, whose Lebesgue measure of the polynomial zeros

set has an arbitrarily small difference from one

Generalized Haar system, polyno-

mial, Lebesgue measure, zeros set

REFERENCES

[1] Alexits G. Convergence problems of orthogonal series. New York, Pergamon Press, 1961.

[2] Kashin B.S., Sahakian A.A. Ortogonal'nye ryady [Orthogonal series]. Moscow, AFTS Publ.,

1999. 560 p.

[3]

Sakharov I.E., Makashov A.A., Kropotov A.N. Using Haar wavelets for image processing and

splicing.

Inzhenernyy zhurnal: nauka i innovatsii

[Engineering journal: Science and Innovation],

2012, no. 11, pp. 44–50 (in Russ.). DOI: 18698/2308-6033-2012-11-465 Available at:

http://engjournal.ru/eng/catalog/pribor/robot/465.html

[4] Mozharov G.P. Comparative analysis of adaptive wavelet-packages algorithms.

Vestn. Mosk.

Gos. Tekh. Univ. im. N.E. Baumana, Priborostr

. [Herald of the Bauman Moscow State Tech. Univ.,

Instrum. Eng.], 2016, no. 1, pp. 75–88 (in Russ.). DOI: 10.18698/0236-3933-2016-1-75-88

[5] Gorshkov Yu.G. Research сomplex for frequency-time analysis of voice signal using the wave-

let technology.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr

. [Herald of the Bau-

man Moscow State Tech. Univ., Instrum. Eng.], 2011, no. 3, pp. 78–87 (in Russ.).

[6] Novikov I.Ya., Protasov V.Yu., Skopina M.A. Teoriya vspleskov [Theory of bursts]. Moscow,

Fizmatlit Publ., 2006. 616 p.

[7]

Syuzev V.V. Spectral analysis in Haar function basis.

Vestn. Mosk. Gos. Tekh. Univ.

im. N.E. Baumana, Priborostr.

[Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.],

2011, no. 2, pp. 48–67 (in Russ.).

[8] Zalmanzon L.A. Preobrazovaniya Fur'ye, Uolsha, Khaara i ikh primenenie v upravlenii,

svyazi i drugikh oblastyakh [Fourier, Walsh, Haar transforms and their application in manage-

ment, communications and other fields]. Moscow, Nauka Publ., 1989. 496 p.

[9] Vilenkin N.Ya. On a class of complete orthonormal systems.

Izv. Akad. Nauk SSSR

.

Ser. Mat.

,

1947, vol. 11, no. 4, pp. 363–400.

[10]

Kaczmarz S., Steinhaus H. Theorie der Orthogonalreinen. New York, Chelsea Publ., 1951.

[11]

Golubov B.I., Rubinshteyn A.I. A class of convergence systems.

Matem. sb

. 1966, vol. 71,

no. 1, pp. 96–115 (in Russ.).

Available at:

http://www.mathnet.ru/links/6c02b9104edb1b318fd76f5954de50dd/sm4253.pdf

[12]

Golubov B.I. On a class of complete orthonornal systems

. Sib. matem. jurn.

[Siberian

Mathematical Journal], 1968, vol. 9, no. 2, pp. 297–314 (in Russ.).