Нули полиномов по системе типа Хаара
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
15
POLINOMIAL ZEROS ACCORDING TO THE HAAR-TYPE SYSTEM
E.A. Vlasova
elena.a.vlasova@yandex.ruBauman Moscow State Technical University, Moscow, Russian Federation
Abstract
Keywords
We obtained an accurate estimate for the Lebesgue measure of
the polynomial zeros set of arbitrarily large order with non-
zero coefficients according to the generalized Haar system for
the case of a bounded sequence of parameters defining a given
system. Similar problems were investigated for the case of an
unbounded sequence of parameters of the generalized Haar
system. In the latter case it is shown that there is always a
polynomial, whose Lebesgue measure of the polynomial zeros
set has an arbitrarily small difference from one
Generalized Haar system, polyno-
mial, Lebesgue measure, zeros set
REFERENCES
[1] Alexits G. Convergence problems of orthogonal series. New York, Pergamon Press, 1961.
[2] Kashin B.S., Sahakian A.A. Ortogonal'nye ryady [Orthogonal series]. Moscow, AFTS Publ.,
1999. 560 p.
[3]
Sakharov I.E., Makashov A.A., Kropotov A.N. Using Haar wavelets for image processing and
splicing.
Inzhenernyy zhurnal: nauka i innovatsii
[Engineering journal: Science and Innovation],
2012, no. 11, pp. 44–50 (in Russ.). DOI: 18698/2308-6033-2012-11-465 Available at:
http://engjournal.ru/eng/catalog/pribor/robot/465.html[4] Mozharov G.P. Comparative analysis of adaptive wavelet-packages algorithms.
Vestn. Mosk.
Gos. Tekh. Univ. im. N.E. Baumana, Priborostr
. [Herald of the Bauman Moscow State Tech. Univ.,
Instrum. Eng.], 2016, no. 1, pp. 75–88 (in Russ.). DOI: 10.18698/0236-3933-2016-1-75-88
[5] Gorshkov Yu.G. Research сomplex for frequency-time analysis of voice signal using the wave-
let technology.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr
. [Herald of the Bau-
man Moscow State Tech. Univ., Instrum. Eng.], 2011, no. 3, pp. 78–87 (in Russ.).
[6] Novikov I.Ya., Protasov V.Yu., Skopina M.A. Teoriya vspleskov [Theory of bursts]. Moscow,
Fizmatlit Publ., 2006. 616 p.
[7]
Syuzev V.V. Spectral analysis in Haar function basis.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Priborostr.
[Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.],
2011, no. 2, pp. 48–67 (in Russ.).
[8] Zalmanzon L.A. Preobrazovaniya Fur'ye, Uolsha, Khaara i ikh primenenie v upravlenii,
svyazi i drugikh oblastyakh [Fourier, Walsh, Haar transforms and their application in manage-
ment, communications and other fields]. Moscow, Nauka Publ., 1989. 496 p.
[9] Vilenkin N.Ya. On a class of complete orthonormal systems.
Izv. Akad. Nauk SSSR
.
Ser. Mat.
,
1947, vol. 11, no. 4, pp. 363–400.
[10]
Kaczmarz S., Steinhaus H. Theorie der Orthogonalreinen. New York, Chelsea Publ., 1951.
[11]
Golubov B.I., Rubinshteyn A.I. A class of convergence systems.
Matem. sb
. 1966, vol. 71,
no. 1, pp. 96–115 (in Russ.).
Available at:
http://www.mathnet.ru/links/6c02b9104edb1b318fd76f5954de50dd/sm4253.pdf[12]
Golubov B.I. On a class of complete orthonornal systems
. Sib. matem. jurn.
[Siberian
Mathematical Journal], 1968, vol. 9, no. 2, pp. 297–314 (in Russ.).