Previous Page  13 / 13
Information
Show Menu
Previous Page 13 / 13
Page Background

Е.А. Власова

16

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

[13]

Vlasova E.A. A certain class of orthogonal convergence systems.

Mathematical Notes of the

Academy of Sciences of the USSR

, 1988, vol. 43, iss. 6, pp. 421–428. DOI: 10.1007/BF01158511

Available at:

http://link.springer.com/article/10.1007%2FBF01158511

[14]

Vlasova E.A. Convergence of series with respect to generalized Haar systems.

Anal. math.,

1987, vol. 13, no. 4, pp. 339–360.

[15]

Vlasova E.A. Series in systems of Haar type.

Izvestiya VUZ. Matematika

[Soviet Mathema-

tics], 1990, vol. 34, no. 9, pp. 1–13 (in Russ.).

Available at:

http://www.mathnet.ru/links/52d3db43a3143ea7443b4c3958fcda20/ivm5441.pdf

[16]

Akishev G.A. On degrees of approximation of some classes by polynomials with respect to

generalized Haar system.

Sib. elektron. matem. izv.

[Siberian Electronic Mathematical Reports],

2006, no. 3, pp. 92–105 (in Russ.).

Available at:

http://www.mathnet.ru/links/fb3bfbeefe9e5741bb2621ea1c55adeb/semr187.pdf

[17]

Akishev G.A. Absolute convergence of Fourier series of superpositions of functions.

Russian Mathematics

, 2009, vol. 53, no. 1. DOI: 10.3103/S1066369X09110012 Available at:

http://link.springer.com/article/10.3103%2FS1066369X09110012

[18]

Volosivets S.S., Fadeev R.N. Vesovaya integriruemost' summ ryadov po mul'tiplikativnym

sistemam.

Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. In-

formatika

[Izvestiya of Saratov University. New Series. Series Mathematics. Mechanics. Informa-

tics], 2014, vol. 14, no. 2, pp. 129–136 (in Russ.).

[19]

Shcherbakov V.I. Dini — Lipschitz criterion on generalized Haar.

Mater. 17-y mezhdunarod.

Saratovskoy zimney shk., posv. 150-letiyu so dnya rozhdeniya V.A. Steklova

[Proc. 17

th

Int. winter

workshop dedicated to the 150

th

anniversary of birth of V.A. Steklov]. Saratov, SGU Publ., 2014,

pp. 307–308 (in Russ.).

[20]

Shcherbakov V.I. On Jordan criterion or its transformation in generalized Haar systems.

Mater. 12-y mezhdunarod. Kazanskoy letney nauchnoy shkoly-konferentsii. T. 51

[Proc. 12

th

Int.

Kazan’ summer school-conf. Vol. 51]. Kazan', Kazan' Mathematical Society Publ., Tatarstan

Academy of Sciences Publ., 2015, pp. 493–496 (in Russ.).

[21]

Shcherbakov V.I. Features of the pointwise Dini convergence criterion of Fourier series on

Vilenkin systems and generalized Haar system on zero-dimensional groups.

Mater. 18-y mezhdu-

narod. Saratovskoy zimney shk

. [Proc. 18

th

Int. Saratov winter workshop]. Saratov, Nauchnaya

kniga Publ., 2016, pp. 341–345 (in Russ.).

[22]

Shcherbakov V.I. Divergence of the Fourier series by generalized Haar systems at points of

continuity of a function.

Russian Mathematics

, 2016, vol. 60, no. 1, pp. 42–59.

DOI: 10.3103/S1066369X16010059

Available at:

http://link.springer.com/article/10.3103%2FS1066369X16010059

[23]

Ul'yanov P.L. On the uniqueness of series in a Haar system with monotone coefficients.

Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika

, 1983, no. 6, pp. 63–73 (in Russ.).

Vlasova E.A.

— Cand. Sc. (Phys.-Math.), Assoc. Professor of Applied Mathematics Depart-

ment, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow,

105005 Russian Federation).

Please cite this article in English as:

Vlasova E.A. Polinomial Zeros According to the Haar-Type System.

Vestn. Mosk. Gos. Tekh.

Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ.,

Nat. Sci.], 2017, no. 3, pp. 4–16. DOI: 10.18698/1812-3368-2017-3-4-16