В.С. Зарубин
18
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 5
[10]
Zarubin V.S., Kuvyrkin G.N. Special features of mathematical modeling of technical
instruments.
Matematicheskoe modelirovanie i chislennye metody
[Mathematical Modeling
and Computational Methods], 2014, no. 1, pp. 5–17 (in Russ.).
DOI: 10.18698/2309-3684-2014-1-517
[11]
Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Rezhimy s obostre-
niem v zadachakh dlya kvazilineynykh parabolicheskikh uravneniy [Blow-up regimes in prob-
lems for quasilinear parabolic equations]. Moscow, Nauka Publ., 1987. 480 p.
[12]
Zarubin V.S., Kuvyrkin G.N. Mathematical modeling of thermomechanical processes
under intense thermal effect.
High Temperature
, 2003, vol. 41, iss. 2, pp. 257–265.
DOI: 10.1023/A:1023390021091
[13] Van'ko V.I., Ermoshina O.V., Kuvyrkin G.N. Variatsionnoe ischislenie i optimal'noe
upravlenie [Variational calculus and optimal control]. Moscow, Bauman MSTU Publ., 2001.
488 p.
[14]
Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering
methods for solving thermal conductivity problems]. Moscow, Energoatomizdat Publ., 1983.
328 p.
[15]
Zarubin V.S., Ivanova E.E., Kuvyrkin G.N. Integral'noe ischislenie funktsiy odnogo pere-
mennogo [Integral calculus of one-variable function]. Moscow, Bauman MSTU Publ., 2006.
528 p.
[16]
Zarubin V.S., Selivanov V.V. Variatsionnye i chislennye metody mekhaniki sploshnoy
sredy [Variational and numerical methods of solid state mechanics]. Moscow, Bauman MSTU
Publ., 1993. 360 p.
[17]
Zarubin V.S., Stankevich I.V. Raschet teplonapryazhennykh konstruktsiy [Heat-stressed
construction calculation]. Moscow, Mashinostroenie Publ., 2005. 352 p.
[18] Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Vvedenie v metody optimizatsii [Introduc-
tion to optimization methods]. Moscow, NITs INFRA-M Publ., 2008. 272 p.
[19]
Attetkov A.V., Zarubin V.S., Kanatnikov A.N. Metody optimizatsii [Optimization methods].
Moscow, ITs RIOR Publ., 2012. 270 p.
[20]
Zarubin V.S., Kuvyrkin G.N., Savel'yeva I.Yu. A variation model option for the heat
breakdown of solid dielectric layer under constant voltage.
Radiooptika
[Radiooptics], 2016,
no. 5, pp. 38–50 (in Russ.). DOI: 10.7463/rdopt.0516.0848088
Available at:
http://radiooptics.ru/en/doc/848088.html[21] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical
methods in solids thermal conductivity theory]. Moscow, Vysshaya shkola Publ., 2001. 550 p.
Zarubin V.S.
— Dr. Sc. (Eng.), Professor of Applied Mathematics Department, Bauman Mos-
cow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Fe-
deration).
Please cite this article in English as:
Zarubin V.S. Variational Notation of a Thermal Breakdown Model for a Solid Dielectric with
Temperature-Dependent Thermal Conductivity.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Bau-
mana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2017, no. 5,
pp. 4–18. DOI: 10.18698/1812-3368-2017-5-4-18