Previous Page  14 / 14
Information
Show Menu
Previous Page 14 / 14
Page Background

Точное решение задачи Дирихле для вырождающегося на границе эллиптического уравнения…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 5

17

[4] Bitsadze A.V. Equations of mathematical physics. Moscow, Mir Publ., 1980. 318 p.

[5] Stein E. Singular integrals and differentiability properties of functions. N.J., Princeton

University Press, 1970.

[6] Parasyuk L.S. Boundary problems for elliptic differential equations that degenerate on the

boundary of domain.

Ukrainska akademia drukarstva

.

Naukovi zapysky

, 1961, no. 13, pp. 65–

75 (in Ukrainian).

[7] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator.

Duke Math.

J

. 1999, vol. 98(3), pp. 465–483.

[8] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator, II.

Duke

Math. J.

, 2002, vol. 111(3), pp. 561–584.

[9] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator, III.

Duke

Math. J

., 2005, vol. 128(1), pp. 119–140.

[10] Barros-Neto J., Cardoso F. Bessel integrals and fundamental solutions for a generalized

Tricomi operator.

Journal of Functional Analysis

, 2001, vol. 183, pp. 472–497.

DOI: 10.1006/jfan.2001.3749

[11] Algazin O.D., Kopaev A.V. Solution to the mixed boundary-value problem for Laplace

equation in multidimentional infinite layer.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,

Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 1,

pp. 3–13 (in Russ.). DOI: 10.18698/1812-3368-2015-1-3-13

[12] Algazin O.D., Kopaev A.V. Dirichlet problem solution for Poisson equation in a multidi-

mensional infinite layer.

Mat. i mat. model. MGTU im. N.E. Baumana

[Mathematics and

Mathematical Modelling of the Bauman MSTU. Electron. Journ.], 2015, no. 4.

DOI: 10.7463/mathm.0415.0812943 Available at:

http://mathmjournal.ru/en/doc/812943.html

[13] Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike [Generalized func-

tions in mathematical physics]. Moscow, Nauka Publ., 1979. 320 p.

[14] Ryshik I.M., Gradstein I.S. Tables of integrals, series, and products. N.Y., Academic Press,

2007.

[15] Barenblatt G.I. Scaling, self-similarity, and intermediate asymptotics. Cambridge Univer-

sity Press, 2002.

[16] Polyanin A.D., Zaytsev V.F., Zhurov A.I. Metody resheniya nelineynykh uravneniy ma-

tematicheskoy fiziki i mekhaniki [Methods

for solving nonlinear

equations

of mathematical

physics

and mechanics]. Moscow, Fizmatlit Publ., 2005. 256 p.

Algazin O.D.

— Cand. Sci. (Phys.-Math.), Assoc. Professor of Computational Mathematics

and Mathematical Physics Department, Bauman Moscow State Technical University (2-ya

Baumanskaya ul. 5, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Algazin O.D. Exact Solution to the Dirichlet Problem for Degenerating on the Boundary Ellip-

tic Equation of Tricomi — Keldysh Type in the Half-Space.

Vestn. Mosk. Gos. Tekh. Univ.

im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat.

Sci.], 2016, no. 5, pp. 4–17. DOI: 10.18698/1812-3368-2016-5-4-17