Точное решение задачи Дирихле для вырождающегося на границе эллиптического уравнения…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 5
17
[4] Bitsadze A.V. Equations of mathematical physics. Moscow, Mir Publ., 1980. 318 p.
[5] Stein E. Singular integrals and differentiability properties of functions. N.J., Princeton
University Press, 1970.
[6] Parasyuk L.S. Boundary problems for elliptic differential equations that degenerate on the
boundary of domain.
Ukrainska akademia drukarstva
.
Naukovi zapysky
, 1961, no. 13, pp. 65–
75 (in Ukrainian).
[7] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator.
Duke Math.
J
. 1999, vol. 98(3), pp. 465–483.
[8] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator, II.
Duke
Math. J.
, 2002, vol. 111(3), pp. 561–584.
[9] Barros-Neto J., Gelfand I.M. Fundamental solutions for the Tricomi operator, III.
Duke
Math. J
., 2005, vol. 128(1), pp. 119–140.
[10] Barros-Neto J., Cardoso F. Bessel integrals and fundamental solutions for a generalized
Tricomi operator.
Journal of Functional Analysis
, 2001, vol. 183, pp. 472–497.
DOI: 10.1006/jfan.2001.3749
[11] Algazin O.D., Kopaev A.V. Solution to the mixed boundary-value problem for Laplace
equation in multidimentional infinite layer.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana,
Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 1,
pp. 3–13 (in Russ.). DOI: 10.18698/1812-3368-2015-1-3-13
[12] Algazin O.D., Kopaev A.V. Dirichlet problem solution for Poisson equation in a multidi-
mensional infinite layer.
Mat. i mat. model. MGTU im. N.E. Baumana
[Mathematics and
Mathematical Modelling of the Bauman MSTU. Electron. Journ.], 2015, no. 4.
DOI: 10.7463/mathm.0415.0812943 Available at:
http://mathmjournal.ru/en/doc/812943.html[13] Vladimirov V.S. Obobshchennye funktsii v matematicheskoy fizike [Generalized func-
tions in mathematical physics]. Moscow, Nauka Publ., 1979. 320 p.
[14] Ryshik I.M., Gradstein I.S. Tables of integrals, series, and products. N.Y., Academic Press,
2007.
[15] Barenblatt G.I. Scaling, self-similarity, and intermediate asymptotics. Cambridge Univer-
sity Press, 2002.
[16] Polyanin A.D., Zaytsev V.F., Zhurov A.I. Metody resheniya nelineynykh uravneniy ma-
tematicheskoy fiziki i mekhaniki [Methods
for solving nonlinear
equations
of mathematical
physics
and mechanics]. Moscow, Fizmatlit Publ., 2005. 256 p.
Algazin O.D.
— Cand. Sci. (Phys.-Math.), Assoc. Professor of Computational Mathematics
and Mathematical Physics Department, Bauman Moscow State Technical University (2-ya
Baumanskaya ul. 5, Moscow, 105005 Russian Federation).
Please cite this article in English as:
Algazin O.D. Exact Solution to the Dirichlet Problem for Degenerating on the Boundary Ellip-
tic Equation of Tricomi — Keldysh Type in the Half-Space.
Vestn. Mosk. Gos. Tekh. Univ.
im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat.
Sci.], 2016, no. 5, pp. 4–17. DOI: 10.18698/1812-3368-2016-5-4-17