Решение задачи терминального управления для плоской системы…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6
133
Белинская Юлия Сергеевна
— аспирант кафедры «Математическое моделирование»
МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул.,
д. 5).
Просьба ссылаться на эту статью следующим образом:
Белинская Ю.С. Решение задачи терминального управления для плоской системы с уче-
том ограничений заменой плоского выхода // Вестник МГТУ им. Н.Э. Баумана.
Сер. Естественные науки. 2016. № 6. C. 122–134. DOI: 10.18698/1812-3368-2016-6-122-134
SOLUTION TO POINT-TO-POINT STEERING PROBLEM
FOR CONSTRAINED FLAT SYSTEM BY CHANGING THE FLAT OUTPUT
Yu.S. Belinskaya
usbelka@mail.ruBauman Moscow State Technical University, Moscow, Russian Federation
Abstract
Keywords
This article presents a solution to point-to-point steering
problem for constrained flat system. Constraints arise from
the physical formulation of the problem. The proposed
approach is based on the replacement of the flat output of
the system by the one with the range of possible values
within the feasible set. This work analyses the system
describing the motion of the four rotor mini-rotorcraft and
proves the flatness of such a dynamic system. Author
designed the dynamic feedback linearizing the system. The
maneuver for a point-to-point steering problem is the
following: the mini-rotorcraft moves in a corridor from
takeoff, through the horizontal flight, around the corner and
to the landing. Thus, its movement is restricted by the floor,
ceiling and walls. The solution of such a complex point-to-
point steering problem can be divided into several steps. The
first step is the problem of a small height lift and its solution.
Then the flat output of the system is changed in order to
satisfy all the constraints. In the beginning of the second step
the trajectory deviates insignificantly from the planned one.
It happens because of the replacement of the flat output and
switching the control. Other steps do not have any
deviation. The article demonstrates the effectiveness of the
proposed approach by showing the results of numerical
simulation
Flat systems, flat output, point-
to-point steering problem, dynamic
feedback, constrained dynamic
systems
REFERENCES
[1] Fliess M., Lévine J., Martin Ph., Rouchon P. A Lie — Bäcklund approach to equivalence and
flatness of nonlinear systems.
IEEE Trans. Automat. Control
, 1999, vol. 44, no. 5, pp. 922–937.
[2] Krishchenko A.P. Stabilization of programmed motion of nonlinear systems.
Izvestiya AN
SSSR
.
Tekhnicheskaya kibernetika
, 1985, no. 6, pp. 103–112 (in Russ.).