Previous Page  13 / 13
Information
Show Menu
Previous Page 13 / 13
Page Background

Ю.С. Белинская

134

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6

[3] Krishchenko A.P. The transformation of nonlinear systems and stabilization of pro-

grammed motions].

Trudy MVTU im. N.E. Baumana

[Proc. of the Bauman MSTU], 1988,

no. 512, pp. 69–87 (in Russ.).

[4] Flores M.E., Milam M.B. Trajectory generation for differentially flat systems via NURBS

basis functions with obstacle avoidance.

Proc. of the 2006 American Control Conference

, 2006,

pp. 5769–5775.

[5] Faulwasser T., Hagenmeyer V., Findeisen R. Optimal exact path-following for constrained

differentially flat systems.

Preprints of the 18th IFAC World Congress

, 2011, pp. 9875–9880.

[6] Belinskaya Yu.S., Chetverikov V.N. Covering method for terminal control with regard

of constraints.

Differential Equations

, 2014, vol. 50, no. 12, pp. 1632–1642.

DOI: 10.1134/S0012266114120076

[7] Chetverikov V.N. Controllability of flat systems.

Differential Equations

, 2007, vol. 43,

no. 11, pp. 1558–1568. DOI: 10.1134/S0012266107110110

[8] Beji L., Abichou A., Slim R. Stabilization with motion planning of a four rotor mini-

rotorcraft for Terrain Missions.

Fourth International Conference on Intelligent Systems Design

and Applications

(ISDA)

, 2004, pp. 335–340.

[9] Beji L., Abichou A. Trajectory and tracking of a mini-rotorcraft.

Proc. of the 2005 IEEE

International Conference on Robotics and Automation

, 2005, pp. 2618–2623.

[10] Belinskaya Yu.S., Chetverikov V.N. Control of four-propeller rotorcraft.

Nauka i obra-

zovanie. MGTU im. N.E. Baumana

[Science & Education of the Bauman MSTU. Electronic

Journal], 2012, no. 5. DOI: 10.7463/0512.0397373

Available at:

http://technomag.bmstu.ru/en/doc/397373.html

[11] Belinskaya Yu.S. Implementation of typical maneuvers of four-propeller helicopter.

Jelektr. zhur. “Molodezhnyy nauchno-tekhnicheskiy vestnik”. MGTU im. N.E. Baumana

[El. J.

“Youth Sci.&Tech. Herald” of Bauman MSTU], 2013, no. 2.

Available at:

http://sntbul.bmstu.ru/doc/551872.html

Belinskaya Yu.S.

— post-graduate student of Mathematical Modelling Department, Bauman

Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian

Federation).

Please cite this article in English as:

Belinskaya Yu.S. Solution to Point-to-Point Steering Problem for Constrained Flat System by

Changing the Flat Output.

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 6, pp. 122–134.

DOI: 10.18698/1812-3368-2016-6-122-134