Ю.С. Белинская
134
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6
[3] Krishchenko A.P. The transformation of nonlinear systems and stabilization of pro-
grammed motions].
Trudy MVTU im. N.E. Baumana
[Proc. of the Bauman MSTU], 1988,
no. 512, pp. 69–87 (in Russ.).
[4] Flores M.E., Milam M.B. Trajectory generation for differentially flat systems via NURBS
basis functions with obstacle avoidance.
Proc. of the 2006 American Control Conference
, 2006,
pp. 5769–5775.
[5] Faulwasser T., Hagenmeyer V., Findeisen R. Optimal exact path-following for constrained
differentially flat systems.
Preprints of the 18th IFAC World Congress
, 2011, pp. 9875–9880.
[6] Belinskaya Yu.S., Chetverikov V.N. Covering method for terminal control with regard
of constraints.
Differential Equations
, 2014, vol. 50, no. 12, pp. 1632–1642.
DOI: 10.1134/S0012266114120076
[7] Chetverikov V.N. Controllability of flat systems.
Differential Equations
, 2007, vol. 43,
no. 11, pp. 1558–1568. DOI: 10.1134/S0012266107110110
[8] Beji L., Abichou A., Slim R. Stabilization with motion planning of a four rotor mini-
rotorcraft for Terrain Missions.
Fourth International Conference on Intelligent Systems Design
and Applications
(ISDA)
, 2004, pp. 335–340.
[9] Beji L., Abichou A. Trajectory and tracking of a mini-rotorcraft.
Proc. of the 2005 IEEE
International Conference on Robotics and Automation
, 2005, pp. 2618–2623.
[10] Belinskaya Yu.S., Chetverikov V.N. Control of four-propeller rotorcraft.
Nauka i obra-
zovanie. MGTU im. N.E. Baumana
[Science & Education of the Bauman MSTU. Electronic
Journal], 2012, no. 5. DOI: 10.7463/0512.0397373
Available at:
http://technomag.bmstu.ru/en/doc/397373.html[11] Belinskaya Yu.S. Implementation of typical maneuvers of four-propeller helicopter.
Jelektr. zhur. “Molodezhnyy nauchno-tekhnicheskiy vestnik”. MGTU im. N.E. Baumana
[El. J.
“Youth Sci.&Tech. Herald” of Bauman MSTU], 2013, no. 2.
Available at:
http://sntbul.bmstu.ru/doc/551872.htmlBelinskaya Yu.S.
— post-graduate student of Mathematical Modelling Department, Bauman
Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005 Russian
Federation).
Please cite this article in English as:
Belinskaya Yu.S. Solution to Point-to-Point Steering Problem for Constrained Flat System by
Changing the Flat Output.
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 6, pp. 122–134.
DOI: 10.18698/1812-3368-2016-6-122-134